Aller au contenu principal

Schwinger parametrization


Schwinger parametrization


Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.

Using the well-known observation that

1 A n = 1 ( n 1 ) ! 0 d u u n 1 e u A , {\displaystyle {\frac {1}{A^{n}}}={\frac {1}{(n-1)!}}\int _{0}^{\infty }du\,u^{n-1}e^{-uA},}

Julian Schwinger noticed that one may simplify the integral:

d p A ( p ) n = 1 Γ ( n ) d p 0 d u u n 1 e u A ( p ) = 1 Γ ( n ) 0 d u u n 1 d p e u A ( p ) , {\displaystyle \int {\frac {dp}{A(p)^{n}}}={\frac {1}{\Gamma (n)}}\int dp\int _{0}^{\infty }du\,u^{n-1}e^{-uA(p)}={\frac {1}{\Gamma (n)}}\int _{0}^{\infty }du\,u^{n-1}\int dp\,e^{-uA(p)},}

for Re(n)>0.

Another version of Schwinger parametrization is:

i A + i ϵ = 0 d u e i u ( A + i ϵ ) , {\displaystyle {\frac {i}{A+i\epsilon }}=\int _{0}^{\infty }du\,e^{iu(A+i\epsilon )},}

which is convergent as long as ϵ > 0 {\displaystyle \epsilon >0} and A R {\displaystyle A\in \mathbb {R} } . It is easy to generalize this identity to n denominators.

See also

  • Feynman parametrization

References



Text submitted to CC-BY-SA license. Source: Schwinger parametrization by Wikipedia (Historical)


ghbass