Aller au contenu principal

Clustered Regularly Interspaced Short Palindromic Repeats


Clustered Regularly Interspaced Short Palindromic Repeats


En génétique, les Clustered Regularly Interspaced Short Palindromic Repeats (« Courtes répétitions palindromiques groupées et régulièrement espacées »), plus fréquemment désignées sous le nom de CRISPR (acronyme prononcé /ˈkrɪspəʳ/), sont des familles de séquences répétées dans l'ADN. De telles familles se caractérisent par des séries de répétitions directes courtes (de 21 à 37 paires de bases) et régulièrement espacées par des séquences appelées « spacer », généralement uniques, de 20 à 40 paires de bases.

En génie génétique, le système CRISPR-Cas9, d'abord utilisé pour typer des souches de bactéries est récemment devenu un outil de manipulation génétique à fort potentiel. CRISPR-Cas9 est notamment utilisé comme ciseau moléculaire afin d'introduire des modifications locales du génome (manipulations souvent qualifiées d'édition génomique) de nombreux organismes modèles.

Première observation et redécouvertes successives

Cette structure répétée a été observée pour la première fois par Yoshizumi Ishino en 1987 chez Escherichia coli. Elle a ensuite été décrite plusieurs fois sous différents noms :

  • LCTR pour Long Clusters of Tandem Repeats. Deux de ces régions sont associées à des LCTR (typique des Archæa) ce qui supporte l’idée que ces LCTR soient impliqués dans le transfert de gènes ;
  • SPIDR pour Spacer Interspaced Direct Repeats ;
  • TREP pour Tandem REPeats ;
  • DVR pour Direct Variable Repeats ;
  • SRSR pour Short Regularly Spaced Repeats.

Un article de Juan Francisco Martínez Mojica de 2000 démontre que toutes les descriptions précédentes n'étaient que des facettes d'une seule et même entité. En 2002, Jansen décide, avec l'accord du groupe de Mojica, de clarifier la nomenclature en créant l'acronyme CRISPR.

Si la séquence répétée est bien conservée au sein d'un organisme, le nombre d'unités au sein d'un train, le nombre de trains et même la présence de trains sont des quantités hautement variables d'une lignée à une autre. De fait, les CRISPR ont été utilisés pour typer des souches bactériennes, une technique appelée spoligotypage,.

Répartition dans le monde vivant

Ces répétitions se rencontrent dans les lignées d'archées et de bactéries, mais n'ont pas encore été observées chez les eucaryotes. Chez les virus, il a été montré que des bactériophages codent le système CRISPR-Cas. Les CRISPR pourraient être la famille de répétition la plus largement répandue dans le monde vivant, avec un peu moins de la moitié des organismes séquencés porteurs de ce type de répétitions (sur plus de 200 génomes testés à la fin de 2005). Les régions CRISPR sont présents chez la plupart des archées thermophiles et la moitié des espèces bactériennes (jusqu'à 10 % du génome chez certaines archées analysées) , concernant aussi bien les bactéries à Gram+ que les bactéries à Gram-. Certains plasmides d'archées sont porteurs de CRISPR homologues de ceux portés par l'organisme hôte. C'est le cas par exemple de Sulfolobus et du plasmide pNOB8,. Certains auteurs ont signalé la présence de CRISPR dans l'ADN mitochondrial (Flamand, 1992)[réf. à confirmer], mais ces résultats n'ont pas pu être reproduits.

Structure

Les locus CRISPR sont caractérisés par une alternance de répétitions directes ou « direct repeats » (c'est-à-dire toutes orientées dans le même sens de lecture), courtes (de 21 à 37 paires de bases) et régulièrement espacées par des séquences appelées « spacers », généralement uniques, de 20 à 40 paires de bases. Les séquences nucléotidiques et la longueur des locus CRISPR sont conservées pour une même espèce, mais varient d'une espèce à l'autre,. Les locus CRISPR sont généralement adjacents aux gènes cas (pour « CRISPR associated »), dont ils sont séparés par une séquence de 300 à 500 paires de bases, appelée séquence « leader ».

Les premiers éléments sur la façon dont la structure CRISPR elle-même (c'est-à-dire la portion constituée de la succession de direct repeats et de spacers) évolue ont été fournis par le travail de Pourcel et al.. Ce travail, portant sur les locus CRISPR de Yersinia pestis, a montré que l'acquisition de nouveaux spacers était polarisée, alors que la perte d'un ou plusieurs « spacers » pouvait survenir tout au long du locus CRISPR. L'acquisition survient de façon adjacente au leader. Le leader est conservé dans la lignée mais pas entre les lignées.

Gènes cas

Rencontrés uniquement dans les génomes porteurs de CRISPR, les gènes cas sont généralement situés à proximité des locus CRISPR. Dès 2005, au moins 45 familles de gènes de ce type ont été décrites. Les 4 premières étant strictement associées. Le plus important de ces gènes est cas1, présent dans presque tous les complexes CRISPR-Cas (parfois notés CRISPR/Cas). La distribution sporadique des sous-types CRISPR-Cas suggère plusieurs évènements de transferts horizontaux au cours de l'évolution microbienne. Les systèmes CRISPR-Cas peuvent être très étendus (jusqu'à 20 gènes différents) et semblent présenter des schémas différents d'une lignée à l'autre, qui ne se retrouvent que dans un nombre très limité d'espèces. Les gènes cas repérés chez des organismes hyperthermophiles ont d'abord été vus comme jouant un rôle de réparation de l'ADN.

Rôles

Si les fonctions des CRISPR n'ont pas encore été clairement identifiées, un certain nombre d'hypothèses ont été avancées :

  • les CRISPR sont impliqués dans la répartition des copies de génomes au cours de la division (expériences menées sur Haloferax mediterranei). Des similitudes avec certains mécanismes de partition de plasmides suggèrent que les CRISPR sont des analogues des séquences de partitionnement bactériennes. Sans être vital pour la cellule puisque certaines lignées en sont dépourvues ;
  • les CRISPR ont un rôle de perturbateur chromosomique en permettant des recombinaisons et sont impliqués dans le système de restauration chromosomique à la suite d'un réarrangement : il a été montré qu'il y a une relation forte entre les CRISPR et les réarrangements. Le motif répété faciliterait les recombinaisons ;
  • deux de ces régions sont associées à des LCTR (typiques des Archæa) ce qui supporte l’idée que ces LCTR sont impliqués dans le transfert de gènes. Nelson a proposé que les CRISPR sont associés à l'origine de réplication et jouent un rôle dans le processus de réplication du chromosome (il a placé le nucléotide 1 comme étant le premier d'un CRISPR) ;
  • chez les archées, site de fixation pour la formation de nucléosomes (enroulement de l’ADN autour de protéines similaires à des histones) permettant de protéger l’ADN ou de réguler l’expression génique ;
  • ces séquences forment des structures secondaires (épingles, Z-DNA et H-DNA) ayant des fonctions de régulation ou de protection.

Rôle « immunitaire » du système CRISPR-Cas

En 2005, on observe que les séquences de certains spacers sont identiques à celles de certains éléments génétiques mobiles, notamment de virus et de plasmides,,.

En mars 2007, l'équipe de Philippe Horvath a montré que l'exposition de cellules porteuses de CRISPR à des phages entraîne l'apparition de nouveaux intervalles, que ces intervalles dérivent du matériel génomique des phages et que le retrait ou l'ajout de ces intervalles modifie la résistance des bactéries face aux phages.

Le système CRISPR-Cas (CASS) est un mécanisme de défense contre les phages et plasmides invasifs, fonctionnant d'une manière analogue à celle du système ARNi des eucaryotes. En intégrant des fragments de gènes étrangers dans des parties non codantes de leur chromosomes, archées ou bactéries acquièrent une résistance aux phages et plasmides. Il s'agit donc d'une forme de système immunitaire héritable par transmission aux cellules filles, permettant aux archées et aux bactéries de s'adapter rapidement à l'évolution des phages et des plasmides,,,. En 2020, une étude explicite comment des marqueurs dérivés des génomes des différents virus rencontrés s'accumulent d'une manière chronologiquement ordonnée (à la manière d'un « enregistreur ADN ») dans la région CRISPR de leur génome. C'est la phase d’immunisation. S'ensuit une immunité : les protéines Cas utilisent ces informations pour reconnaitre et désactiver tout virus de signature déjà connue.

Il a été montré que les phages pouvaient contourner le système CRISPR-Cas via des gènes spécifiques.

Les systèmes CRISPR-Cas observés chez les bactéries et les archées d'une part et le système ARNi observé chez les eucaryotes d'autre part ne semblent pas dériver d'un ancêtre commun. Ils ne sont donc pas homologues.

Mécanismes moléculaires

Les systèmes CRISPR utilisent les gènes cas1 et cas2 qui sont impliqués dans l'intégration, en tant que spacer de fragments de gènes étrangers dans le CRISPR.

Trois types de systèmes CRISPR-Cas sont connus :

  • les systèmes de types I, utilisent un complexe Cascade pour cliver les transcrits de CRISPR au niveau des épingles. Lorsqu'un complexe Cascade/spacer s'associe à un ADN cible (reconnaissance par hybridations) il recrute la protéine Cas3 qui clive un brin de l'ADN cible ;
  • les systèmes de types II, utilisent la RNAse III pour séparer les répétitions des transcrits. La protéine Cas9 s'associe avec un fragment de transcrit et, lors de la reconnaissance d'un ADN cible, Cas9 clive les 2 brins de cet ADN ;
  • les systèmes de type III, utilisent la protéine Cas6 pour cliver les transcrits de CRISPR au niveau des épingles, les segments de transcrits obtenus s'associent avec un complexe Cas10. Ce système requiert qu'il y ait transcription de l'ADN cible, le complexe Cas10/spacer clive alors un brin de l'ADN cible (brin non transcrit), ainsi que l'ARN en cours de transcription.

Utilisation en biologie moléculaire

Le système CRISPR-Cas9, notamment tel que développé par la chercheuse française Emmanuelle Charpentier sur la base d'une idée qu'elle a eue à Vienne au début des années 2000 (pour lequel elle obtient le prix Nobel) est depuis les années 2010 devenu un outil de génie génétique révolutionnaire permettant de modifier plus facilement et plus précisément les séquences d’ADN, et utilisé pour des thérapies géniques associé à un vecteur souvent viral.

Il est aussi utilisé pour exprimer des gènes grâce à l'activation CRISPR, entre autres pour reprogrammer des cellules.

Découverte

La technique d'édition de génome CRISPR-Cas9 a été découverte par l'équipe de la chercheuse française Emmanuelle Charpentier aidée par la professeure américaine Jennifer Doudna. Elle a été par la suite développée à partir de 2012 par plusieurs chercheurs, dont notamment le biologiste moléculaire Feng Zhang, du Broad Institute (associé à Harvard et au MIT).

En avril 2016 Charpentier a présenté dans le journal Nature une nouvelle version plus performante d'utilisation du CRISPR.

Brevets et entreprise

CRISPR Therapeutics, jeune entreprise cofondée par Emmanuelle Charpentier pour breveter et développer cet outil est devenue l'une des sociétés de biotechnologies précliniques les plus richement financées dans le monde, mais est en conflit concernant le brevetage de cette technologie,.

En 2021, Wageningen University & Research a annoncé avoir décidé d'ouvrir ses brevets d'édition de gènes CRISPR-Cas à des ONG à but non lucratif (sous forme de licences gratuites) pour des applications non commerciales (par exemple pour améliorer les végétaux alimentaire cultivés dans les pays pauvres, plus rapidement que via la sélection végétale conventionnelle).

Berkeley conteste devant une commission d'appel du United States Patent and Trademark Office le brevet accordé au Broad Institute pour cette découverte . Le 15 février 2017, l'United States Patent and Trademark Office a considéré que les brevets déposés par le Broad Institute sur l'usage de CRISPR/Cas9 dans le cas de cellules eucaryotes étaient valides. Pour autant, les revendications de l'Université de Berkeley (à l'origine des dépôts de brevets de Jennifer Doudna et d'Emmanuelle Charpentier) quant à l'emploi de CRISPR/Cas9 sur tous types de matériel génétique (y compris les cellules eucaryotes) n'ont pas été rejetées,. En janvier 2018, l'Office européen des brevets a révoqué un des principaux brevets concernant CRISPR-Cas9 déposé (et accepté dans un premier temps) par le Broad Institute. Ce dernier a fait appel de la décision.

Éthique

Cette technique suscite des questions d'éthique médicale et environnementale quant à l'eugénisme et aux conséquences environnementales de la manipulation du génome, quand cet outil est appliqué à des cellules héréditaires,. Un certain nombre de scientifiques et d'autres personnalités ont lancé un appel pour une éthique de la conservation sans le pilotage des gènes, considérant qu'elle détient le potentiel de transformer absolument le monde de la nature et les rapports des humains avec celui-ci. Ce qui revient à proposer délibérément l’extinction comme outil.

Le congrès mondial de la nature de septembre 2016 a voté une motion demandant à la directrice générale et aux commissions de l'UICN d'évaluer « de toute urgence les incidences des techniques de forçage génétique et d'autres techniques apparentées et leurs effets possibles sur la conservation et l'utilisation durable de la diversité biologique, ainsi que le partage équitable des avantages découlant des ressources génétiques, afin que l'UICN élabore des orientations sur ce thème, tout en s'abstenant de soutenir ou d'approuver des activités de recherche, y compris des essais sur le terrain, portant sur l'utilisation de techniques de forçage génétique à des fins de conservation ou autres tant que cette évaluation n'aura pas été réalisée »

Giuseppe Zanotti Luxury Sneakers

Culture populaire

  • Le système CRISPR-cas9 est à la base de l'expérience ratée du film Rampage : Hors de contrôle.
  • Le système CRISPR-cas9 intervient dans l'intrigue du roman de Robin Cook : Pandémie.

Annexes

Bibliographie

  • (en) Joy Y. Wang et Jennifer A. Doudna, « CRISPR technology: A decade of genome editing is only the beginning », Science, vol. 379, no 6629,‎ (DOI 10.1126/science.add8643)

Articles connexes

  • Activation CRISPR
  • Transcription activator-like effector nuclease
  • Cas9
  • Nucléase à doigt de zinc
  • New Breeding Techniques

Liens externes

  • « Thérapies CRISPR : couper le mal par la racine », La Science, CQFD, France Culture, 28 septembre 2023.
  • (en) « CRISPRfinder program online », sur Université Paris Sud, (consulté le ).
  • Bases de données interactives listant les CRISPR découverts à ce jour :
    • (en) « CRISPRdb », (consulté le ).
    • (en) « CRISPI: a CRISPR Interactive database », (consulté le ).

  • Ressource relative à la santé :
    • Medical Subject Headings

Notes et références

  • Portail de la biologie cellulaire et moléculaire

Text submitted to CC-BY-SA license. Source: Clustered Regularly Interspaced Short Palindromic Repeats by Wikipedia (Historical)


INVESTIGATION