Aller au contenu principal

朱世杰恒等式


朱世杰恒等式


朱世杰恒等式是组合数的一阶求和公式。元朝數學家朱世傑在《四元玉鑒》中,利用垛積術、招差術給出:

i = a n ( i a ) = ( n + 1 a + 1 ) {\displaystyle \sum _{i=a}^{n}{\binom {i}{a}}={\binom {n+1}{a+1}}}

或以 m 1 {\displaystyle m-1} n {\displaystyle n} 再與上式作差,寫成:

i = m n ( i a ) = ( n + 1 a + 1 ) ( m a + 1 ) {\displaystyle \sum _{i=m}^{n}{\binom {i}{a}}={\binom {n+1}{a+1}}-{\binom {m}{a+1}}}

证明

递归方法

欲證

( m a + 1 ) + ( m a ) + ( m + 1 a ) . . . + ( n a ) = ( n + 1 a + 1 ) {\displaystyle {\binom {m}{a+1}}+{\binom {m}{a}}+{\binom {m+1}{a}}...+{\binom {n}{a}}={\binom {n+1}{a+1}}}

可以反覆使用帕斯卡法則合併左式首兩項。

组合方法

n {\displaystyle n} 元集 S = { a 1 , a 2 , a 3 , . . . , a n } {\displaystyle S=\{a_{1},a_{2},a_{3},...,a_{n}\}} r {\displaystyle r} 个元素,有 ( n r ) {\displaystyle {\binom {n}{r}}} 种方法。

必有 a 1 {\displaystyle a_{1}} 时,在 n 1 {\displaystyle n-1} 个元素中选 r 1 {\displaystyle r-1} 个元素,排除 a 1 {\displaystyle a_{1}} ,必有 a 2 {\displaystyle a_{2}} 时,在 n 2 {\displaystyle n-2} 个元素中选 r 1 {\displaystyle r-1} 个元素,排除 a 2 {\displaystyle a_{2}} ,如此类推,直到必有 a n r + 1 {\displaystyle a_{n-r+1}} 时,在 r 1 {\displaystyle r-1} 个元素中选 r 1 {\displaystyle r-1} 个元素。

k = r n ( k 1 r 1 ) = ( n r ) {\displaystyle \sum _{k=r}^{n}{\binom {k-1}{r-1}}={\binom {n}{r}}}

应用

朱世杰恒等式可应用于等幂求和问题。例如:

i = 1 n i = i = 1 n ( i 1 ) = ( n + 1 2 ) {\displaystyle \sum _{i=1}^{n}i=\sum _{i=1}^{n}{\binom {i}{1}}={\binom {n+1}{2}}}
i = 1 n i ( i + 1 ) = 2 i = 1 n ( i + 1 2 ) = 2 ( n + 2 3 ) {\displaystyle \sum _{i=1}^{n}i(i+1)=2\sum _{i=1}^{n}{\binom {i+1}{2}}=2{\binom {n+2}{3}}}

参考资料


Text submitted to CC-BY-SA license. Source: 朱世杰恒等式 by Wikipedia (Historical)