Aller au contenu principal

Symplectic basis


Symplectic basis


In linear algebra, a standard symplectic basis is a basis e i , f i {\displaystyle {\mathbf {e} }_{i},{\mathbf {f} }_{i}} of a symplectic vector space, which is a vector space with a nondegenerate alternating bilinear form ω {\displaystyle \omega } , such that ω ( e i , e j ) = 0 = ω ( f i , f j ) , ω ( e i , f j ) = δ i j {\displaystyle \omega ({\mathbf {e} }_{i},{\mathbf {e} }_{j})=0=\omega ({\mathbf {f} }_{i},{\mathbf {f} }_{j}),\omega ({\mathbf {e} }_{i},{\mathbf {f} }_{j})=\delta _{ij}} . A symplectic basis of a symplectic vector space always exists; it can be constructed by a procedure similar to the Gram–Schmidt process. The existence of the basis implies in particular that the dimension of a symplectic vector space is even if it is finite.

See also

  • Darboux theorem
  • Symplectic frame bundle
  • Symplectic spinor bundle
  • Symplectic vector space

Notes

References

  • da Silva, A.C., Lectures on Symplectic Geometry, Springer (2001). ISBN 3-540-42195-5.
  • Maurice de Gosson: Symplectic Geometry and Quantum Mechanics (2006) Birkhäuser Verlag, Basel ISBN 978-3-7643-7574-4.

Text submitted to CC-BY-SA license. Source: Symplectic basis by Wikipedia (Historical)


INVESTIGATION